Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Euro Surveill ; 28(8)2023 02.
Article in English | MEDLINE | ID: covidwho-2258570

ABSTRACT

Effectiveness against severe COVID-19 of a second booster dose of the bivalent (original/BA.4-5) mRNA vaccine 7-90 days post-administration, relative to a first booster dose of an mRNA vaccine received ≥ 120 days earlier, was ca 60% both in persons ≥ 60 years never infected and in those infected > 6 months before. Relative effectiveness in those infected 4-6 months earlier indicated no significant additional protection (10%; 95% CI: -44 to 44). A second booster vaccination 6 months after the latest infection may be warranted.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , Italy/epidemiology , RNA, Messenger , Vaccination
2.
Ann Ist Super Sanita ; 58(4): 227-235, 2022.
Article in English | MEDLINE | ID: covidwho-2255984

ABSTRACT

INTRODUCTION: Coronavirus disease 19 (COVID-19) is an infectious disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). To date, few data on clinical features and risk factors for disease severity and death by gender are available. AIM: The current study aims to describe from a sex/gender perspective the characteristics of the SARS-CoV-2 cases occurred in the Italian population from February 2020 until October 2021. METHOD AND RESULTS: We used routinely collected data retrieved from the Italian National Surveillance System. The highest number of cases occurred among women between 40 and 59 years, followed by men in the same age groups. The proportion of deaths due to COVID-19 was higher in men (56.46%) compared to women (43.54%). Most of the observed deaths occurred in the elderly. Considering the age groups, the clinical outcomes differed between women and men in particular in cases over 80 years of age; with serious or critical conditions more frequent in men than in women. CONCLUSIONS: Our data clearly demonstrate a similar number of cases in women and men, but with more severe disease and outcome in men, thus confirming the importance to analyse the impact of sex and gender in new and emerging diseases.


Subject(s)
COVID-19 , Male , Female , Humans , Aged, 80 and over , Aged , COVID-19/epidemiology , SARS-CoV-2 , Risk Factors , Italy/epidemiology
3.
Epidemiol Prev ; 44(5-6 Suppl 2): 70-80, 2020.
Article in Italian | MEDLINE | ID: covidwho-2240192

ABSTRACT

OBJECTIVES: to describe the integrated surveillance system of COVID-19 in Italy, to illustrate the outputs used to return epidemiological information on the spread of the epidemic to the competent public health bodies and to the Italian population, and to describe how the surveillance data contributes to the ongoing weekly regional monitoring and risk assessment system. METHODS: the COVID-19 integrated surveillance system is the result of a close and continuous collaboration between the Italian National Institute of Health (ISS), the Italian Ministry of Health, and the regional and local health authorities. Through a web platform, it collects individual data of laboratory confirmed cases of SARS-CoV-2 infection and gathers information on their residence, laboratory diagnosis, hospitalisation, clinical status, risk factors, and outcome. Results, for different levels of aggregation and risk categories, are published daily and weekly on the ISS website, and made available to national and regional public health authorities; these results contribute one of the information sources of the regional monitoring and risk assessment system. RESULTS: the COVID-19 integrated surveillance system monitors the space-time distribution of cases and their characteristics. Indicators used in the weekly regional monitoring and risk assessment system include process indicators on completeness and results indicators on weekly trends of newly diagnosed cases per Region. CONCLUSIONS: the outputs of the integrated surveillance system for COVID-19 provide timely information to health authorities and to the general population on the evolution of the epidemic in Italy. They also contribute to the continuous re-assessment of risk related to transmission and impact of the epidemic thus contributing to the management of COVID-19 in Italy.


Subject(s)
COVID-19/epidemiology , Population Surveillance , SARS-CoV-2 , Hospitalization/statistics & numerical data , Humans , Information Dissemination , Italy/epidemiology , Population Surveillance/methods , Research Report , Risk
4.
Vaccine ; 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2229846

ABSTRACT

Several countries started a 2nd booster COVID-19 vaccination campaign targeting the elderly population, but evidence around its effectiveness is still scarce. This study aims to estimate the relative effectiveness of a 2nd booster dose of COVID-19 mRNA vaccine in the population aged ≥ 80 years in Italy, during predominant circulation of the Omicron BA.2 and BA.5 subvariants. We linked routine data from the national vaccination registry and the COVID-19 surveillance system. On each day between 11 April and 6 August 2022, we matched 1:1, according to several demographic and clinical characteristics, individuals who received the 2nd booster vaccine dose with individuals who received the 1st booster vaccine dose at least 120 days earlier. We used the Kaplan-Meier method to compare the risks of SARS-CoV-2 infection and severe COVID-19 (hospitalisation or death) between the two groups, calculating the relative vaccine effectiveness (RVE) as (1 - risk ratio)X100. Based on the analysis of 831,555 matched pairs, we found that a 2nd booster dose of mRNA vaccine, 14-118 days post administration, was moderately effective in preventing SARS-CoV-2 infection compared to a 1st booster dose administered at least 120 days earlier [14.3 %, 95 % confidence interval (CI): 2.2-20.2]. RVE decreased from 28.5 % (95 % CI: 24.7-32.1) in the time-interval 14-28 days to 7.6 % (95 % CI: -14.1 to 18.3) in the time-interval 56-118 days. However, RVE against severe COVID-19 was higher (34.0 %, 95 % CI: 23.4-42.7), decreasing from 43.2 % (95 % CI: 30.6-54.9) to 27.2 % (95 % CI: 8.3-42.9) over the same time span. Although RVE against SARS-CoV-2 infection was much reduced 2-4 months after a 2nd booster dose, RVE against severe COVID-19 was about 30 %, even during prevalent circulation of the Omicron BA.5 subvariant. The cost-benefit of a 3rd booster dose for the elderly people who received the 2nd booster dose at least four months earlier should be carefully evaluated.

5.
Int J Infect Dis ; 129: 135-141, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2210483

ABSTRACT

OBJECTIVES: During 2022, Omicron became the dominant SARS-CoV-2 variant in Europe. This study aims to assess the impact of such variant on severe disease from SARS-CoV-2 compared with the Delta variant in Italy. METHODS: Using surveillance data, we assessed the risk of developing severe COVID-19 with Omicron infection compared with Delta in individuals aged ≥12 years using a multilevel negative binomial model adjusting for sex, age, vaccination status, occupation, previous infection, weekly incidence, and geographical area. We also analyzed the interaction between the sequenced variant, age, and vaccination status. RESULTS: We included 21,645 cases of SARS-CoV-2 infection where genome sequencing found Delta (10,728) or Omicron (10,917), diagnosed from November 15, 2021 to February 01, 2022. Overall, 3,021 cases developed severe COVID-19. We found that Omicron cases had a reduced risk of severe COVID-19 compared with Delta cases (incidence rate ratio [IRR] = 0.77; 95% confidence interval [CI]: 0.70-0.86). The largest difference was observed in cases aged 40-59 (IRR = 0.66; 95% CI: 0.55-0.79), while no protective effect was found in those aged 12-39 (IRR = 1.03; 95% CI: 0.79-1.33). Vaccination was associated with a lower risk of developing severe COVID-19 in both variants. CONCLUSION: The Omicron variant is associated with a lower risk of severe COVID-19 compared to infection with the Delta variant, but the degree of protection varies with age.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Italy/epidemiology , Europe
6.
Vaccine ; 41(7): 1286-1289, 2023 02 10.
Article in English | MEDLINE | ID: covidwho-2184287

ABSTRACT

From January 2020 to July 2022, 120 measles cases were reported to the Italian national surveillance system, of which 105 had symptom onset in 2020, nine in 2021 and six in the first seven months of 2022. This represents a sharp decline compared to the time period immediately preceding the COVID-19 pandemic, most likely due to the non-pharmaceutical interventions implemented to prevent SARS-CoV2 transmission. Of 105 cases reported in 2020, 103 acquired the infection before a national lockdown was instituted on 9 March 2020. Overall, one quarter of cases reported at least one complication. As non-pharmaceutical pandemic measures are being eased worldwide, and considering measles seasonality, infectiousness, and its potential severity, it is important that countries ensure high vaccination coverage and close immunity gaps, to avoid risk of future outbreaks.


Subject(s)
COVID-19 , Measles , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , RNA, Viral , Lifting , SARS-CoV-2 , Communicable Disease Control , Measles/epidemiology , Measles/prevention & control , Disease Outbreaks/prevention & control , Italy/epidemiology , Measles Vaccine , Vaccination
7.
Epidemiol Infect ; 150: e166, 2022 04 22.
Article in English | MEDLINE | ID: covidwho-2036725

ABSTRACT

INTRODUCTION: EURO2020 generated a growing media and population interest across the month period, that peaked with large spontaneous celebrations across the country upon winning the tournament. METHODS: We retrospectively analysed data from the national surveillance system (indicator-based) and from event-based surveillance to assess how the epidemiology of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) changed in June-July 2021 and to describe cases and clusters linked with EURO2020. RESULTS: Widespread increases in transmission and case numbers, mainly among younger males, were documented in Italy, none were linked with stadium attendance. Vaccination coverage against SARS-CoV-2 was longer among cases linked to EURO2020 than among the general population. CONCLUSIONS: Transmission increased across the country, mainly due to gatherings outside the stadium, where, conversely, strict infection control measures were enforced. These informal 'side' gatherings were dispersed across the entire country and difficult to control. Targeted communication and control strategies to limit the impact of informal gatherings occurring outside official sites of mass gathering events should be further developed.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Humans , Italy/epidemiology , Male , Pandemics/prevention & control , Retrospective Studies , SARS-CoV-2
8.
Lancet ; 400(10346): 97-103, 2022 07 09.
Article in English | MEDLINE | ID: covidwho-1921470

ABSTRACT

BACKGROUND: By April 13, 2022, more than 4 months after the approval of BNT162b2 (Pfizer-BioNTech) for children, less than 40% of 5-11-year-olds in Italy had been vaccinated against COVID-19. Estimating how effective vaccination is in 5-11-year-olds in the current epidemiological context dominated by the omicron variant (B.1.1.529) is important to inform public health bodies in defining vaccination policies and strategies. METHODS: In this retrospective population analysis, we assessed vaccine effectiveness against SARS-CoV-2 infection and severe COVID-19, defined as an infection leading to hospitalisation or death, by linking the national COVID-19 surveillance system and the national vaccination registry. All Italian children aged 5-11 years without a previous diagnosis of infection were eligible for inclusion and were followed up from Jan 17 to April 13, 2022. All children with inconsistent vaccination data, diagnosed with SARS-CoV-2 infection before the start date of the study or without information on the municipality of residence were excluded from the analysis. With unvaccinated children as the reference group, we estimated vaccine effectiveness in those who were partly vaccinated (one dose) and those who were fully vaccinated (two doses). FINDINGS: By April 13, 2022, 1 063 035 (35·8%) of the 2 965 918 children aged 5-11 years included in the study had received two doses of the vaccine, 134 386 (4·5%) children had received one dose only, and 1 768 497 (59·6%) were unvaccinated. During the study period, 766 756 cases of SARS-CoV-2 infection and 644 cases of severe COVID-19 (627 hospitalisations, 15 admissions to intensive care units, and two deaths) were notified. Overall, vaccine effectiveness in the fully vaccinated group was 29·4% (95% CI 28·5-30·2) against SARS-CoV-2 infection and 41·1% (22·2-55·4) against severe COVID-19, whereas vaccine effectiveness in the partly vaccinated group was 27·4% (26·4-28·4) against SARS-CoV-2 infection and 38·1% (20·9-51·5) against severe COVID-19. Vaccine effectiveness against infection peaked at 38·7% (37·7-39·7) at 0-14 days after full vaccination and decreased to 21·2% (19·7-22·7) at 43-84 days after full vaccination. INTERPRETATION: Vaccination against COVID-19 in children aged 5-11 years in Italy showed a lower effectiveness in preventing SARS-CoV-2 infection and severe COVID-19 than in individuals aged 12 years and older. Effectiveness against infection appears to decrease after completion of the current primary vaccination cycle. FUNDING: None. TRANSLATION: For the Italian translation of the summary see Supplementary Materials section.


Subject(s)
COVID-19 , Viral Vaccines , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Child , Humans , Retrospective Studies , SARS-CoV-2
9.
Euro Surveill ; 27(20)2022 05.
Article in English | MEDLINE | ID: covidwho-1862542

ABSTRACT

We explored the risk factors associated with SARS-CoV-2 reinfections in Italy between August 2021 and March 2022. Regardless of the prevalent virus variant, being unvaccinated was the most relevant risk factor for reinfection. The risk of reinfection increased almost 18-fold following emergence of the Omicron variant compared with Delta. A severe first SARS-CoV-2 infection and age over 60 years were significant risk factors for severe reinfection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Italy/epidemiology , Middle Aged , Protective Factors , Reinfection
10.
Expert Rev Vaccines ; 21(7): 975-982, 2022 07.
Article in English | MEDLINE | ID: covidwho-1778823

ABSTRACT

BACKGROUND: Consolidated information on the effectiveness of COVID-19 booster vaccination in Europe are scarce. RESEARCH DESIGN AND METHODS: We assessed the effectiveness of a booster dose of an mRNA vaccine against any SARS-CoV-2 infection (symptomatic or asymptomatic) and severe COVID-19 (hospitalization or death) after over two months from administration among priority target groups (n = 18,524,568) during predominant circulation of the Delta variant in Italy (July-December 2021). RESULTS: Vaccine effectiveness (VE) against SARS-CoV-2 infection and, to a lesser extent, against severe COVID-19, among people ≥60 years and other high-risk groups (i.e. healthcare workers, residents in long-term-care facilities, and persons with comorbidities or immunocompromised), peaked in the time-interval 3-13 weeks (VE against infection = 67.2%, 95% confidence interval (CI): 62.5-71.3; VE against severe disease = 89.5%, 95% CI: 86.1-92.0) and then declined, waning 26 weeks after full primary vaccination (VE against infection = 12.2%, 95% CI: -4.7-26.4; VE against severe disease = 65.3%, 95% CI: 50.3-75.8). After 3-10 weeks from the administration of a booster dose, VE against infection and severe disease increased to 76.1% (95% CI: 70.4-80.7) and 93.0% (95% CI: 90.2-95.0), respectively. CONCLUSIONS: These results support the ongoing vaccination campaign in Italy, where the administration of a booster dose four months after completion of primary vaccination is recommended.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
11.
Ann Ist Super Sanita ; 58(1): 25-33, 2022.
Article in English | MEDLINE | ID: covidwho-1761028

ABSTRACT

AIMS: To assess the impact of the COVID-19 pandemic on all-cause mortality in Italy during the first wave of the epidemic, taking into consideration the geographical heterogeneity of the spread of COVID-19. METHODS: This study is a retrospective, population-based cohort study using national statistics throughout Italy. Survival analysis was applied to data aggregated by day of death, age groups, sex, and Italian administrative units (107 provinces). We applied Cox models to estimate the relative hazards (RH) of excess mortality, comparing all-cause deaths in 2020 with the expected deaths from all causes in the same time period. The RH of excess deaths was estimated in areas with a high, moderate, and low spread of COVID-19. We reported the estimate also restricting the analysis to the period of March-April 2020 (first peak of the epidemic). RESULTS: The study population consisted of 57,204,501 individuals living in Italy as of January 1, 2020. The number of excess deaths was 36,445, which accounts for 13.4% of excess mortalities from all causes during January-May 2020 (i.e., RH = 1.134; 95% confidence interval (CI): 1.129-1.140). In the macro-area with a relatively higher spread of COVID-19 (i.e., incidence rate, IR): 450-1,610 cases per 100,000 residents), the RH of excess deaths was 1.375 (95% CI: 1.364-1.386). In the area with a relatively moderate spread of COVID-19 (i.e., IR: 150-449 cases) it was 1.049 (95% CI: 1.038-1.060). In the area with a relatively lower spread of COVID-19 (i.e., IR: 30-149 cases), it was 0.967 (95% CI: 0.959-0.976). Between March and April (peak months of the first wave of the epidemic in Italy), we estimated an excess mortality from all causes of 43.5%. The RH of all-cause mortality for increments of 500 cases per 100,000 residents was 1.352 (95% CI: 1.346-1.359), corresponding to an increase of about 35%. CONCLUSIONS: Our analysis, making use of a population-based cohort model, estimated all-cause excess mortality in Italy taking account of both time period and of COVID-19 geographical spread. The study highlights the importance of a temporal/geographic framework in analyzing the risk of COVID-19-epidemy related mortality.


Subject(s)
COVID-19 , Cohort Studies , Humans , Italy/epidemiology , Pandemics , Retrospective Studies
12.
BMJ ; 376: e069052, 2022 02 10.
Article in English | MEDLINE | ID: covidwho-1759321

ABSTRACT

OBJECTIVES: To estimate the effectiveness of mRNA vaccines against SARS-CoV-2 infection and severe covid-19 at different time after vaccination. DESIGN: Retrospective cohort study. SETTING: Italy, 27 December 2020 to 7 November 2021. PARTICIPANTS: 33 250 344 people aged ≥16 years who received a first dose of BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine and did not have a previous diagnosis of SARS-CoV-2 infection. MAIN OUTCOME MEASURES: SARS-CoV-2 infection and severe covid-19 (admission to hospital or death). Data were divided by weekly time intervals after vaccination. Incidence rate ratios at different time intervals were estimated by multilevel negative binomial models with robust variance estimator. Sex, age group, brand of vaccine, priority risk category, and regional weekly incidence in the general population were included as covariates. Geographic region was included as a random effect. Adjusted vaccine effectiveness was calculated as (1-IRR)×100, where IRR=incidence rate ratio, with the time interval 0-14 days after the first dose of vaccine as the reference. RESULTS: During the epidemic phase when the delta variant was the predominant strain of the SARS-CoV-2 virus, vaccine effectiveness against SARS-CoV-2 infection significantly decreased (P<0.001) from 82% (95% confidence interval 80% to 84%) at 3-4 weeks after the second dose of vaccine to 33% (27% to 39%) at 27-30 weeks after the second dose. In the same time intervals, vaccine effectiveness against severe covid-19 also decreased (P<0.001), although to a lesser extent, from 96% (95% to 97%) to 80% (76% to 83%). High risk people (vaccine effectiveness -6%, -28% to 12%), those aged ≥80 years (11%, -15% to 31%), and those aged 60-79 years (2%, -11% to 14%) did not seem to be protected against infection at 27-30 weeks after the second dose of vaccine. CONCLUSIONS: The results support the vaccination campaigns targeting high risk people, those aged ≥60 years, and healthcare workers to receive a booster dose of vaccine six months after the primary vaccination cycle. The results also suggest that timing the booster dose earlier than six months after the primary vaccination cycle and extending the offer of the booster dose to the wider eligible population might be warranted.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , BNT162 Vaccine/immunology , COVID-19/epidemiology , Immunization, Secondary/statistics & numerical data , SARS-CoV-2/pathogenicity , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Adolescent , Adult , Aged , Aged, 80 and over , BNT162 Vaccine/administration & dosage , COVID-19/diagnosis , COVID-19/immunology , COVID-19/prevention & control , Female , Follow-Up Studies , Humans , Immunogenicity, Vaccine , Incidence , Italy/epidemiology , Male , Middle Aged , SARS-CoV-2/isolation & purification , Severity of Illness Index , Time Factors , Treatment Outcome , Vaccination/statistics & numerical data , Young Adult
13.
Euro Surveill ; 27(5)2022 02.
Article in English | MEDLINE | ID: covidwho-1700766

ABSTRACT

BackgroundSeveral SARS-CoV-2 variants of concern (VOC) have emerged through 2020 and 2021. There is need for tools to estimate the relative transmissibility of emerging variants of SARS-CoV-2 with respect to circulating strains.AimWe aimed to assess the prevalence of co-circulating VOC in Italy and estimate their relative transmissibility.MethodsWe conducted two genomic surveillance surveys on 18 February and 18 March 2021 across the whole Italian territory covering 3,243 clinical samples and developed a mathematical model that describes the dynamics of co-circulating strains.ResultsThe Alpha variant was already dominant on 18 February in a majority of regions/autonomous provinces (national prevalence: 54%) and almost completely replaced historical lineages by 18 March (dominant across Italy, national prevalence: 86%). We found a substantial proportion of the Gamma variant on 18 February, almost exclusively in central Italy (prevalence: 19%), which remained similar on 18 March. Nationally, the mean relative transmissibility of Alpha ranged at 1.55-1.57 times the level of historical lineages (95% CrI: 1.45-1.66). The relative transmissibility of Gamma varied according to the assumed degree of cross-protection from infection with other lineages and ranged from 1.12 (95% CrI: 1.03-1.23) with complete immune evasion to 1.39 (95% CrI: 1.26-1.56) for complete cross-protection.ConclusionWe assessed the relative advantage of competing viral strains, using a mathematical model assuming different degrees of cross-protection. We found substantial co-circulation of Alpha and Gamma in Italy. Gamma was not able to outcompete Alpha, probably because of its lower transmissibility.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Italy/epidemiology , Models, Theoretical
14.
Bulletin of the World Health Organization ; 100(2):161-167, 2022.
Article in English | CINAHL | ID: covidwho-1690495

ABSTRACT

Problem After Italy's first national restriction measures in 2020, a robust approach was needed to monitor the emerging epidemic of coronavirus disease 2019 (COVID-19) at subnational level and provide data to inform the strengthening or easing of epidemic control measures. Approach We adapted the European Centre for Disease Prevention and Control rapid risk assessment tool by including quantitative and qualitative indicators from existing national surveillance systems. We defined COVID-19 risk as a combination of the probability of uncontrolled transmission of severe acute respiratory syndrome coronavirus 2 and of an unsustainable impact of COVID-19 cases on hospital services, adjusted in relation to the health system's resilience. The monitoring system was implemented with no additional cost in May 2020. Local setting The infectious diseases surveillance system in Italy uses consistent data collection methods across the country's decentralized regions and autonomous provinces. Relevant changes Weekly risk assessments using this approach were sustainable in monitoring the epidemic at regional level from 4 May 2020 to 24 September 2021. The tool provided reliable assessments of when and where a rapid increase in demand for health-care services would occur if control or mitigation measures were not increased in the following 3 weeks. Lessons learnt Although the system worked well, framing the risk assessment tool in a legal decree hampered its flexibility, as indicators could not be changed without changing the law. The relative complexity of the tool, the impossibility of real-time validation and its use for the definition of restrictions posed communication challenges. Situación Tras las primeras medidas nacionales de restricción en Italia en 2020, se necesitaba un enfoque sólido para supervisar la epidemia emergente de la coronavirosis de 2019 (COVID-19) a nivel subnacional y proporcionar datos que informaran sobre el refuerzo o la flexibilización de las medidas de contención de la epidemia. Enfoque Se adaptó la herramienta de valoración rápida de riesgos del Centro Europeo para la Prevención y el Control de las Enfermedades, al incluir indicadores cuantitativos y cualitativos de los sistemas nacionales de vigilancia existentes. Se definió el riesgo de la COVID-19 como una combinación de la probabilidad de transmisión descontrolada del coronavirus del síndrome respiratorio agudo grave de tipo 2 y de un efecto no sostenible de los casos de la COVID-19 en los servicios hospitalarios, y se ajustó en relación con la capacidad de recuperación del sistema sanitario. El sistema de supervisión se aplicó sin costes adicionales en mayo de 2020. Marco regional El sistema de vigilancia de las enfermedades infecciosas en Italia aplica métodos de recopilación de datos coherentes en todas las regiones y provincias autónomas descentralizadas del país. Cambios importantes Las valoraciones semanales de los riesgos mediante este enfoque fueron sostenibles en la supervisión de la epidemia a nivel regional entre el 4 de mayo de 2020 y el 24 de septiembre de 2021. La herramienta proporcionó valoraciones fiables de cuándo y dónde se produciría un rápido aumento de la demanda de servicios sanitarios si no se incrementaban las medidas de contención o mitigación en las tres semanas siguientes. Lecciones aprendidas Aunque el sistema funcionó bien, el hecho de enmarcar la herramienta de valoración de los riesgos en un decreto legal dificultó su flexibilidad, ya que los indicadores no se podían modificar sin cambiar la ley. La relativa complejidad de la herramienta, la imposibilidad de validación en tiempo real y su uso para la definición de las restricciones plantearon problemas de comunicación. Problème Après avoir pris ses premières mesures de restriction nationales en 2020, l'Italie avait besoin d'une approche solide pour surveiller l'épidémie naissante de maladie à coronavirus 2019 (COVID-19) au niveau régional, et fournir les données permettant de renforcer ou d'alléger les mesures destinées à l'endiguer. Approche Nous avons adapté l'outil d'évaluation rapide des risques du Centre européen de prévention et de contrôle des maladies en y intégrant des indicateurs quantitatifs et qualitatifs issus des systèmes de surveillance nationaux existants. Pour définir le risque lié à la COVID-19, nous avons associé la probabilité d'une transmission incontrôlée du coronavirus 2 du syndrome respiratoire aigu sévère, à l'impact immédiat des cas de COVID-19 sur les services hospitaliers, en procédant à des ajustements selon la résilience du système de soins de santé. Le dispositif de surveillance a été mis en oeuvre en mai 2020 sans entraîner de coûts supplémentaires. Environnement local En Italie, le système de surveillance des maladies infectieuses repose sur des méthodes uniformes de collecte de données dans les provinces autonomes et régions décentralisées à travers le pays. Changements significatifs Les évaluations des risques réalisées toutes les semaines avec cette approche ont permis de surveiller l'épidémie à l'échelle régionale du 4 mai 2020 au 24 septembre 2021. L'outil a identifié les dates et lieux susceptibles de connaître une augmentation rapide de la demande en services de soins de santé si aucune mesure supplémentaire de contrôle et de lutte n'était prise dans les trois semaines. Leçons tirées Bien que le système ait fonctionné, inscrire l'outil d'évaluation des risques dans un décret législatif a réduit sa flexibilité, car les indicateurs ne pouvaient être modifiés sans réformer la loi. La relative complexité de l'outil, l'impossibilité de procéder à une validation en temps réel et son usage pour imposer des restrictions ont posé des problèmes de communication. Проблема После первых национальных ограничительных мер в Италии в 2020 году потребовался активный подход для мониторинга зарождающейся эпидемии коронавирусной инфекции 2019 года (COVID-19) на субнациональном уровне и для предоставления данных для обоснования усиления или ослабления мер по борьбе с эпидемией. Подход Авторы адаптировали инструмент для оперативных оценок рисков Европейского центра по контролю и профилактике заболеваний, включив в него количественные и качественные показатели из существующих национальных систем эпиднадзора. Авторы определили риск COVID-19 как комбинацию вероятности неконтролируемой передачи тяжелого острого респираторного синдрома, вызванного коронавирусом-2, и разрушительного воздействия случаев COVID-19 на больничное обслуживание, которая скорректирована с учетом устойчивости системы здравоохранения. Система мониторинга была внедрена без каких-либо дополнительных затрат в мае 2020 года. Местные условия В системе эпиднадзора за инфекционными заболеваниями в Италии используются последовательные методы сбора данных по децентрализованным регионам и автономным провинциям страны. Осуществленные перемены Еженедельные оценки рисков с использованием данного подхода регулярно применялись при мониторинге эпидемии на региональном уровне с 4 мая 2020 года по 24 сентября 2021 года. Инструмент обеспечил надежную оценку того, когда и где может произойти быстрое увеличение спроса на медицинские услуги, если меры по борьбе или смягчению последствий не будут усилены в течение следующих 3 недель. Выводы Несмотря на то что система работала эффективно, включение инструмента для оценок рисков в юридические постановления ограничивало его гибкость, поскольку показатели не могли быть изменены без изменения закона. Относительная сложность инструмента, невозможность проверки в реальном времени и его использование для определения ограничений создают проблемы коммуникации. 问题 2020 年意大利首次实施全国性限制措施后,需要 采取可靠方法以监测新型冠状病毒肺炎 (新冠肺炎) 疫情在地方层面的蔓延情况,并提供数据以表明是否 需要加强或放松疫情控制措施。 方法 通过纳入现有国家监测系统的定量和定性指 标,我们调整了欧洲疾病预防和控制中心的快速风险 评估工具。我们将新型冠状病毒肺炎风险综合定义为 严重急性呼吸系统综合症冠状病毒 2 不受控制传播 的可能性以及新型冠状病毒肺炎病例对医院服务的非持续性影响,并根据卫生系统的顺应力进行了调整。 2020 年 5 月,在没有产生额外成本的前提下实施了监 测系统。 当地状况 意大利传染病监测系统在全国各个分散 的地区和自治省统一使用相同的数据收集方法。 相关变化 在 2020 年 5 月 4 日至 2021 年 9 月 24 日 期间,使用这种方法开展的每周风险评估在监测区域 层面疫情情况方面具有可持续性。该工具能够可靠地 评估,如果在接下来的 3 周内没有加强控制或缓解措 施,何时何地医疗保健服务需求会迅速增加。 经验教训 尽管该系统运作良好,但将风险评估工 具纳入法令范畴限制了其灵活性,因为若不更改法律, 则无法变更指标。该工具的相对复杂性、实时验证的 不可能性及其在法规限定方面的用途导致产生了沟通 挑战。

15.
Bull World Health Organ ; 100(2): 161-167, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1674216

ABSTRACT

PROBLEM: After Italy's first national restriction measures in 2020, a robust approach was needed to monitor the emerging epidemic of coronavirus disease 2019 (COVID-19) at subnational level and provide data to inform the strengthening or easing of epidemic control measures. APPROACH: We adapted the European Centre for Disease Prevention and Control rapid risk assessment tool by including quantitative and qualitative indicators from existing national surveillance systems. We defined COVID-19 risk as a combination of the probability of uncontrolled transmission of severe acute respiratory syndrome coronavirus 2 and of an unsustainable impact of COVID-19 cases on hospital services, adjusted in relation to the health system's resilience. The monitoring system was implemented with no additional cost in May 2020. LOCAL SETTING: The infectious diseases surveillance system in Italy uses consistent data collection methods across the country's decentralized regions and autonomous provinces. RELEVANT CHANGES: Weekly risk assessments using this approach were sustainable in monitoring the epidemic at regional level from 4 May 2020 to 24 September 2021. The tool provided reliable assessments of when and where a rapid increase in demand for health-care services would occur if control or mitigation measures were not increased in the following 3 weeks. LESSONS LEARNT: Although the system worked well, framing the risk assessment tool in a legal decree hampered its flexibility, as indicators could not be changed without changing the law. The relative complexity of the tool, the impossibility of real-time validation and its use for the definition of restrictions posed communication challenges.


Subject(s)
COVID-19 , Epidemics , Humans , Italy/epidemiology , Risk Assessment , SARS-CoV-2
16.
Euro Surveill ; 26(47)2021 11.
Article in English | MEDLINE | ID: covidwho-1538333

ABSTRACT

We assessed the impact of COVID-19 vaccination in Italy, by estimating numbers of averted COVID-19 cases, hospitalisations, ICU admissions and deaths between January and September 2021, by age group and geographical macro areas. Timing and speed of vaccination programme implementation varied slightly between geographical areas, particularly for older adults. We estimated that 445,193 (17% of expected; range: 331,059-616,054) cases, 79,152 (32%; range: 53,209-148,756) hospitalisations, 9,839 ICU admissions (29%; range: 6,434-16,276) and 22,067 (38%; range: 13,571-48,026) deaths were prevented by vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Hospitalization , Humans , Intensive Care Units , Italy/epidemiology , SARS-CoV-2 , Vaccination
17.
Health Place ; 71: 102642, 2021 09.
Article in English | MEDLINE | ID: covidwho-1330835

ABSTRACT

The objective was to investigate the association between deprivation and COVID-19 outcomes in Italy during pre-lockdown, lockdown and post-lockdown periods using a retrospective cohort study with 38,534,169 citizens and 222,875 COVID-19 cases. Multilevel negative binomial regression models, adjusting for age, sex, population-density and region of residence were conducted to evaluate the association between area-level deprivation and COVID-19 incidence, case-hospitalisation rate and case-fatality. During lockdown and post-lockdown, but not during pre-lockdown, higher incidence of cases was observed in the most deprived municipalities compared with the least deprived ones. No differences in case-hospitalisation and case-fatality according to deprivation were observed in any period under study.


Subject(s)
COVID-19 , Communicable Disease Control , Humans , Italy/epidemiology , Retrospective Studies , SARS-CoV-2 , Socioeconomic Factors
18.
Nat Commun ; 12(1): 4570, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1328847

ABSTRACT

To counter the second COVID-19 wave in autumn 2020, the Italian government introduced a system of physical distancing measures organized in progressively restrictive tiers (coded as yellow, orange, and red) imposed on a regional basis according to real-time epidemiological risk assessments. We leverage the data from the Italian COVID-19 integrated surveillance system and publicly available mobility data to evaluate the impact of the three-tiered regional restriction system on human activities, SARS-CoV-2 transmissibility and hospitalization burden in Italy. The individuals' attendance to locations outside the residential settings was progressively reduced with tiers, but less than during the national lockdown against the first COVID-19 wave in the spring. The reproduction number R(t) decreased below the epidemic threshold in 85 out of 107 provinces after the introduction of the tier system, reaching average values of about 0.95-1.02 in the yellow tier, 0.80-0.93 in the orange tier and 0.74-0.83 in the red tier. We estimate that the reduced transmissibility resulted in averting about 36% of the hospitalizations between November 6 and November 25, 2020. These results are instrumental to inform public health efforts aimed at preventing future resurgence of cases.


Subject(s)
COVID-19/epidemiology , Communicable Disease Control , Humans , Italy/epidemiology , SARS-CoV-2/pathogenicity
19.
Vaccine ; 39(34): 4788-4792, 2021 08 09.
Article in English | MEDLINE | ID: covidwho-1301034

ABSTRACT

In Italy, the COVID-19 vaccination campaign started in December 2020 with the vaccination of healthcare workers (HCW). To analyse the real-life impact that vaccination is having on this population group, we measured the association between week of diagnosis and HCW status using log-binomial regression. By the week 22-28 March, we observed a 74% reduction (PPR 0.26; 95% CI 0.22-0.29) in the proportion of cases reported as HCW and 81% reduction in the proportion of symptomatic cases reported as HCW, compared with the week with the lowest proportion of cases among HCWs prior to the vaccination campaign (31 August-7 September). The reduction, both in relative and absolute terms, of COVID-19 cases in HCWs that started around 30 days after the start of the vaccination campaign suggest that COVID-19 vaccines are being effective in preventing infection in this group.


Subject(s)
COVID-19 Vaccines , COVID-19 , Health Personnel , Humans , Italy/epidemiology , SARS-CoV-2 , Vaccination
20.
Euro Surveill ; 26(25)2021 Jun.
Article in English | MEDLINE | ID: covidwho-1288763

ABSTRACT

To assess the real-world impact of vaccines on COVID-19 related outcomes, we analysed data from over 7 million recipients of at least one COVID-19 vaccine dose in Italy. Taking 0-14 days post-first dose as reference, the SARS-CoV-2 infection risk subsequently decreased, reaching a reduction by 78% (incidence rate ratios (IRR): 0.22; 95% CI: 0.21-0.24) 43-49 days post-first dose. Similarly, hospitalisation and death risks decreased, with 89% (IRR: 0.11; 95% CI: 0.09-0.15) and 93% (IRR: 0.07; 95% CI: 0.04-0.11) reductions 36-42 days post-first dose. Our results support ongoing vaccination campaigns.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Hospitalization , Hospitals , Humans , Italy/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL